Economics 113 Professor Spearot
Introduction to Econometrics
Fall 2012 - Midterm 3
Name \qquad ID

Midterm 3-60 Points

You must answer all questions. Please write your name on every page. The exam is closed book and closed notes. You may use calculators, but they must not be graphing calculators. No cell phones. Do not use your own scratch paper.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature \qquad

Suppose that you wish to predict light truck prices as a function of a few basic characteristics:

$$
\log (\text { price })=\beta_{0}+\beta_{1} \log (\text { weight })+\beta_{2} \log (\text { length })+\beta_{3} \log (\text { width })+\beta_{4} \log (c y l)+u
$$

Here, price is measured in dollars, weight is measured in pounds, length and width are measured in inches, and cyl is the number of cylinders in the engine. The results from estimating this equation are below:

Source	SS	df	MS	Number of obs $=$	3297
				F (4, 3292) =	499.65
Model	90.4147706	4	22.6036926	Prob > F	0.0000
Residual	148.927025	3292	. 045239072	R-squared	0.3778
				Adj R-squared =	0.3770
Total	239.341795	3296	. 072615836	Root MSE	. 21269
logprice	Coef.	Std.	rr. t	[95\% Conf. In	erval]
logweight	1.091928	. 0322	143 XXXXX	XXXXXXXXXXXXXXXXX	XXXXXXX
loglength	-. 173286	. 0357	808 XXXXX	XXXXXXXXXXXXXXXXX	XXXXXXX
logwidth	-1.001126	. 0807	677 XXXXX	XXXXXXXXXXXXXXXXX	XXXXXXX
logcyl	$.0428736$	$.025$	$818 \text { XXXXX }$	XXXXXXXXXXXXXXXXX	XXXXXXX
cons	5.942897	. 2774	355 XXXXX	XXXXXXXXXXXXXXXXX	XXXXXXX

a.) Using the 95% confidence level, test whether the coefficient on $\log (c y l)$ is significantly different from zero. Please state your null and alternative hypotheses, and briefly interpret the result. (10 Points)
b.) Suppose I claim that the elasticity of price within respect to width is not equal to -1. What is the probability that I'm wrong? (10 Points)
c.) Suppose I claim that $\beta_{1}+\beta_{3}=0$. Please state a null and alternative hypotheses that can test this claim, and derive an equation that allows me to test the null against the alternative. Show your work!! (10 Points)
d.) I decide that I'm adding too many variables in predicting the vehicle price. Instead I estimate

$$
\log (\text { price })=\beta_{0}+\beta_{2} \log (\text { length })+\beta_{4} \log (c y l)+u
$$

The results from estimating this equation are below:

Is this model preferred to the model in 'a'? Please test this at the 95% level, stating your null and alternative hypotheses. Show your work!!! (10 Points)
e.) I'm having second thoughts about using logs, and instead estimate the following:

$$
\text { price }=\beta_{0}+\beta_{1} \text { weight }+\beta_{2} c y l+\beta_{3} l t r+u
$$

Where the additional variable $l t r$ is the liters displacement by the engine. The results are below:

Source \|	SS	$\mathrm{df} \quad \mathrm{MS}$			Number of obs $=$	3298
					$\mathrm{F}(3,3294)=$	485.49
Model \|	$3.2852 e+10$	$31.0951 \mathrm{e}+10$			Prob > F	0.0000
Residual \|	$7.4300 \mathrm{e}+10$	329422556107.4			R-squared	0.3066
					Adj R -squared $=$	0.3060
Total \|	$1.0715 e+11$	329732499913.2			Root MSE =	4749.3
price \|	Coef.	Std. Err.		$P>\|t\|$	[95\% Conf. Interval]	
weight \|	4.012499	. 134	814	XXXX	XXXXXXXXXXXXXXXXX	XXXXXXX
cyl \|	447.3331	117.2	983	XXXX	XXXXXXXXXXXXXXXXX	XXXXXXX
ltr \|	-635.1207	114.4		XXXX	XXXXXXXXXXXXXXXXX	XXXXXXX
cons \|	3137.16	573.5	268	XXXX	XXXXXXXXXXXXXXXXX	XXXXXXX

Please construct a 90% confidence interval for the coefficient on weight. Please interpret this confidence interval. (10 Points)
f.) Finally, after generating the new variables, I run the following regression:

$$
\text { price }=\beta_{0}+\beta_{1}(\text { weight }-5000)+\beta_{2}(c y l-8)+\beta_{3}(\text { ltr }-5.4)+u
$$

The results are below:

Source	SS	df	MS	Number of obs $=3298$
				$F(3,3294)=485.49$
Model \|	$3.2852 e+10$	3	$1.0951 \mathrm{e}+10$	Prob > F $=0.0000$
Residual \|	$7.4300 \mathrm{e}+10$	3294	22556107.4	R -squared $=0.3066$
				Adj R-squared $=0.3060$
Total \|	$1.0715 \mathrm{e}+11$	3297	32499913.2	Root MSE $=4749.3$
price	Coef.	Std.	Err.	[95\% Conf. Interval]
weight - 50001	4.012499	. 134	814 XXXX	XXXXXXXXXXXXXXXXXXXXXXXX
cyl - 8 \|	447.3331	117.2	983 XXXX	XXXXXXXXXXXXXXXXXXXXXXXX
ltr - 5.4 \|	-635.1207	114.4	063 XXXX	XXXXXXXXXXXXXXXXXXXXXXXX
_cons \|	23348.67	124.8	494 XXXX	XXXXXXXXXXXXXXXXXXXXXXXX

Please construct a 95\% confidence interval for the constant. Please interpret this confidence interval. (10 Points)

		0									
0.1		0.5398	0.543	0.5478		0.	0.5596	0.5636	0.5675		
		0.5793	0	0.	0.5910	0.5948	0.5987	0.602	0.6064	03	
		0.6179	0	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	6480	
		0.6554		0	0.6664		0.6736		8	0.6844	
		0.6915		0	0.7019	0	0.7088		0	0.7190	
		0		0	0		2				
		0		0.7642	0	0	4	0.7764			
0.8		0			0		23		0.8078		
		0	0.8186	0	0	0	0.8289	0.8315	0.8340	5	
		0.8	0.	0	0	0.	O.	0.8554	O.	0.8599	
		0.86	0.		0.		0.		.		
		0.8849	0	0.8888	0	0.	0.	0	0.8980	97	
		0	0.	0.	0.						
				0.9222		0.	0.9265	0	0.9292	0.9306	
		0.9332	0	0	0	0	0.9394	0.9406	0.9418	0.9429	
		0					05	0.9515	25	0.9535	
		0		0	0	0	99	0.9608	0.9616	0.9625	
		0.9	0	0	0	0.	0.9678	0.9686	0.9693	0.9699	
		0.9	0	0	0	0.	0.9744	0.9750	6		
2		0.9	0	0	0.	0.	0.9798	0.9803	0	0.9812	
2.1		0.9	0.9	0	0	0.	0	0.9846	0.9850	0.9854	
2.2		0.	0.	0.	0	0.	0.9	0	0.9884	0.9887	
2		0	0	0		0	0				
2.		0.9	0.	0.		0.	0.99	0.	0.9932	0.	
2		0.9938	0.	0.9941	0.	0.9945	0.9946	0.	0.9949		
2.6		0.9953	0	0	0.9	0.9959	0.9960	0	0.9962	0.9963	
2.7		0.9965	0.9	0.9967	0.9968	0.9969	0.9970	0.	0.9972	0.9973	
2.8		0.9974	0.9	0.9	0.9	0.9977	0.9978	0.	0.9979	0.9980	
2		0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	
3.0		0.9987	0.9	0.9987	0.	0.	0.9989		0.9989		

